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Abstract. Tagged partide properties, such BP the diffusion coefficient and veloc- 
ity autocordation fundion, are calculated in the mean-field approximation for all 
standard lattice gas cellular automata defined on (hyper)cubic, square and triangular 
lattices and on a line. Tagged particle dynamics is intmduced thmgb maximally 
random or minimally random collision rules. Far a completely filled lattice the former 
reduaer to 8 random walk, the latter to ballistic motion. 

1. Introduction 

The fluid transport coefficients, such as shear and bulk viscosity, of lattice gas cellular 
automata (LGCA) for all basic models have been calculated in the mean-field or Boltz- 
mann approximation by H h o n  [I], d'Humi8res and Lallemand [2], and by Dubrulle et  
a/ [3]. Analytic results for the diffusion coefficient D and the closely related velocity 
autocorrelation function (VACF) of a tagged or coloured particle in the same set of 
basic models are scarce [4-71, and vary with the chosen collision rules between tagged 
and fluid particles, even within a given model. This can be seen from [4], where the 
first few terms in the density expansion of the diffusion coefficient are calculated an- 
alytically for two choices of tagged particle collision rules in the square lattice 4-bit 
HPP model, introduced by Hardy, Pomeau and de Pazzis [ E ] .  The bit number b (here 
b = 4 )  denotes the number of allowed velocity channels per node. 

Frenkel and cc-workers have calculated the self-diffusion coefficient D for the twc- 
dimensional 7-hit FHP-I11 model [6] (a  version of the triangular lattice gas introduced 
by Frisch, Hasslacher and Pomeau [2]) and for the quasi-three-dimensional 24-hit face- 
centred hypercubic (FCHC) model [7]. Here D was given in terms of a polynomial of 
degree (b- 1). The counting involved in obtaining its coefficients was essentially done 
by computer. In their formulation of tagged particle dynamics, to which we refer as 
mazimally random collision rules,  they used the fact that in LGCA a particle loses its 
identity in any interacting ('active') or non-interacting collision. This property is also 
imposed on tagged particle dynamics, where one defines stochastic collision rules such 
that the tagged particle has  an equal probability of being in any possible outgoing 
velocity channel, in interacting as well as non-interacting collisions. For a completely 
filled lattice the tagged particle becomes a simple random walk on a regular lattice. 

t Permanent address: School of Business Administration, Sen& University, 1-1, Higashimits, 2- 
chome. Tamkku, Kawas$d, 214, Japan. 
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There are a great variety of possible choices for tagged particle dynamics, all 
satisfying the essential requirement that  a colour-blind observer sees the same collision 
rules as in a CA fluid without tags. Apart from the maximally random collision rules 
we shall also introduce minimally random collision rules, which can be considered as 
a stochastic extension of the tagged particle dynamics of [4], Here the tagged particle 
continues its straight-tine motion in non-interacting collisions and is only scattered 
with equal probability in any outgoing velocity channel in an interacting collision 
(with momentum exchange between particles). For a completely filled lattice the 
motion of the tagged particle becomes ballistic. 

In this paper we derive analytic results starting from the expression for the self- 
diffusion coefficient in a LGCA [9,10] 

where d is the number of dimensions and (. . .) is an average over an equilibrium 
ensemble. If correlations between subsequent collisions are neglected (Boltzmann or 
mean-field approximation), then according to [7] the above expression reduces to 

D =  p(0) - - - ( k  ;) 
where the ‘eigenvalue’ A is defined through p(1) = p(O)(l - A) and is related to  
the mean free time between collisions, 1, = -[ln(l - A)]-’. The single-eigenvalue 
ansatt or ‘single relaxation time approximation’ (2) is not always exact, as we shall 
see later. I t  does hold for single-speed models with at most one additional type of 
rest particle. In this case, it can be shown by symmetry arguments [SI that  any vector 
u ( t ) ,  invariant under the isometries that leave u(0 )  invariant, is proportional to i t ,  i.e. 
u ( t )  - v(O), which implies (2) as we shall see later. However, it is difficult to assess a 
priori the limits of validity of this approximation. Later on we shall in fact see classes 
of multiple-speed models, where equations (2) hold or break down depending on the 
choice of tagged particle collision rules. 

For tagged particle dynamics with the maximally random collision rules we calcu- 
late X directly from the VACF after one time step and find the following very general 
result: 

where f = p / b  is the reduced density per node (0 < f < 1) and b the bit number. 
This result holds in any single-component athermal LGCA fluid for any dimension 
(d = 1 , 2 , .  . .) for any set offluid collision rules, consistent with particle and momentum 
conservation and consistent with the symmetry of the underlying lattice. For instance, 
models having moving or rest particles with different masses have to be excluded, as 
well as mixtures and Lemperature-dependent LGCA. 

As we are studying the VACF in equilibrium, the existence of an equilibrium state 
has been assumed implicitly, and consequently the probability distribution factorizes 
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into probability distributions per channel. This implies at  least the assumption of a 
semi-detailed balance. LGCA violating the semi-detailed balance approach a steady 
state, different from thermal equilibrium, in which the probability distribution no 
longer factorizes. There is no reason to expect that Einstein's formula for the self- 
diffusion (1) and other Green-Kubo relations for transport coefficients have any mean- 
ing in this steady state. 

This result, quoted in (3), will be derived in section 2. In section 3 we apply the 
minimally random tagged particle collision rules to the commonly used models. As it 
turns out, even there (2) is still correct. In section 4 we present a 5-bit model with 
minimally random collision rules where (2) is not applicable, and we have to construct 
the Lorentz-Boltzmann equation. There v turns out to be a linear combination of 
two eigenfunctions, requiring adequate changes in the mean-field results for diffusion 
coefficient and VACF. 

2. Maximally random collision rules 

The calculation of the VACF involves two steps. In step (i) we consider a ptuple  
-,.ll:&-- ..,hew. &h- 4-mm...J ..-4:-ln h-- :-:&:-l T - I  1-1 I-*> L.. -..~-nr- 
C"ll'll"l,, . . L L F I C  Y I L C  Y'"55'" y',1vrc,r 11- 11,,1,c..1 "C1"C 'YJ  CO.  U C Y  ,CJ ',I," ,L J "C 1rupru 

tively the sets ofp incoming and outgoing velocities. Then, the expected velocity of the 
tagged particle after one time step due to this collision is (llp) EL. c* = (l/p) 
This is a consequence of momentum conservation. The summations extend either over 
the outgoing or over the incoming set of velocities. Let Cp(llco) denote the expected 
velocity, summed over all possible sets of p tuple  collisions. In total we have for the 
expected ye!ncity of ?he tsgged pzr?ic!e &er one !iEe step, given its igi?.iz! ve!ficity 
CO 

where fp- ' (1-  f)'-P is the probability to have exactly (p - 1) fluid particles at the 
node. 

In fact, for the calculation of C(llco) we may just as well sum over all incoming 
velocities, and the distinction between interacting and non-interacting collisions is 
irrelevant. Consequently F(llco) and the eigenvalue X do not depend on the collision 
rules for the fluid particles. 

In step (ii) we calculate Cp(llco) where obviously i?l(llco) =e, .  If only one fluid 
particle is present in channel c of the node under consideration, the expected velocity 
is f (c  + c,). Adding the contributions of all binary collisions requires a summation 
over all  velocity channels except co, i.e. 

(5) 

where the relation E, c = 0 has been used. More generally for a ptuple  collision 
one can choose a set of (p - 1) channels [p - 11 = {cl, c2 , .  . . , out of the set 
[b - 11, which does not contain c,,. This can be done in (;I;) possible ways. The 
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combinatorial factor (3 vanishes for p > b.  So 
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The double sum on the first line reduces to (;I;) c,, where (:I:) is the number 
of times a specific c appears in the total sum. Finally, inserting (6) into (4), with the 
help of Newton’s binomial formula, yields 

E (1 - A)co (7) 

with the eigenvalue X given by (3). The VACF p(1) itself is obtained after averaging 
over c,, 

p(1)= -~cQ.~(llco)=~(o)(l-x) 1 

=(1 
db 

1 
p(0) = c.2 e: 

c 

where e, is in fact the speed of sound in athermal lattice gases. 
The result for ii(llc,,) and p(1) above are ezact for all densities. The probabilistic 

reasoning leading to these results is exact as long as colliding particles are uncom- 
laled, i.e. do not recollide with particles they have met before (ring collisions). The 
mean-field or  Boltzmann upproximation neglects all correlated collision sequences by 
assuming that (7) is valid for any two consecutive time steps, i.e. 

(9) 
- 
v(t + llu(t)) = (1 - A)E((t) = (1 - A)‘+’C,. 

From here the mean-field results in (2) follow immediately. 

3. Minimally random collision rules 

Using these collision rules the tag remains on the incoming velocity unless an inter- 
acting p tnple  collision occurs, where the outcome equals c,, plus an expected excess 
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velocity ((lip) c, e-c,)). Let Gp(llco) be the expected excess velocity summed over 
all intemcting ptuple  collisions, then 

k 

V(llCo) = CO + ~Gp(l lco) fP- ' ( l  - f 1 b - p .  
p = 2  

Now the possible sets of interacting p tuple  collisions depend very strongly on the 
model. For the squarelattice HPP model there is only one binary collision with van- 
ishing expected velocity. So G2(llco) = -co and 

h P P  = f ( 1  - f)2 (11) 

in agreement with Binder's results [SI. In the 6-bit FHP-I model [2] only binary and 
triple collisions occur, yielding similarly 

AI = f (1  - f)3. (12) 

In the collision saturated version of the 6-bit FHP-I' model, defined in table 1 of [2], 
additional triple and quadruple collisions occur, yielding 

AI, = if(1- f)'(3 + 13f - 10f2).  

AI1 = f (1  - f)3(3 - 4f + 2f2) 

A,,, = f ( 1 -  f)5{3 + 92 + T" + b2 } 

(13) 

Using the collision table (table 2) of [2] we find for the FHP-I1 

(14) 

and for the FHP-I11 

(15) 49 2 53 3 

with z = f/( l  - f). For the different versions of the FCHC model [3,7] not all 
collision rules are available in the literature. We have not attempted to give any 
explicit expression for A.  However, in general Ep(llco) = AC, and the constant A and 
v(llc,) can be calculated most conveniently by some algebraic manipulation program. - 

4. Lorentz-Boltzmann equation 

In cmes where T(1lc) is not a multiple of c equation (2) is not valid. In order t o  
evaluate the Green-Kubo formula (1)  one needs to construct the lattice Lorentz- 
Boltsmann equation. It describes the time evolution of the coloured (tagged) particle 
distribution g(c,r , t )  in a sea of uncoloured particles, that is in equilibriumexcept for 
its colour distribution, i.e. 

g ( c , r + c , t ) - g ( c , r , t ) =  I ( c l  g)=-SIcclg(c' ,r,t) .  (16) 

The collision term I ( c  I g) of the CA fluid is linear in g(c,r ,  t) and depends furthermore 
on the equilibrium distribution f = p/b of the fluid particles. For a bb i t  model the 
collision operator SI,,, is a b x b matrix and g(c ,r , t )  a bvector with components 
labelled by c. 
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Following the method of [11,12] and using a matrix notation, one shows that in 
the mean-field approximation 

In the same approximation one finds for the VACF that 

p(t)  = (db)-'C,(l- R)*c,. (18) 

If each Cartesian component .,(a = I, y, . . . d) is a &dimensional eigenvector of R, 
then (17) and (18) reduce to  (2). In fact all hasic models fall in this category, as has 
been shown in the two previous sections. 

To illustrate the use of the more general (17) we consider a one-dimensional 
CA fluid, that  has been extensively discussed in the literature (13,141. It consists 
of V points on a line with periodic boundary conditions. At each lattice point there 
are five velocity channels ck = k (k = 2,1 ,0 ,  -1, -2), each of which can be occupied by 
at most one particle. Interacting collisions between fluid particles occur only if at  most 
two particles are present at  the same node. They are described by the (non-self-dual) 
collision rules 

For the tagged particle dynamics we use the minimally random collision rulest. The 
expected excess velocity of these binary collisions is then 

1 - 
Wz(1 I cl) = ?[Cl + C-2  + CO + C1 + C-2  + C i ]  - 3C1 = -3C1 
- (20) 
W 2 ( l  I c2) = [c, + +c, + c1] - 2c2 = - - I C  4 2  

and G(1Ic) # (1 - X)c. To calculate the diffusion coefficient in (17) we need the 
Lorentz-Boltzmann equation (16) and construct the 5 x 5 collision matrix using min- 
imally random collision rules in (19). The result is 

I(C, I 9) = ;f(i - f Y I - 4 ~ 7 ~  + 29, +go + s-d = -QZjgj 

r(cl  19) = i f ( 1 -  f)3t2g2 - +go + 29- ,  +g-2} = -Rljgj (21) 
~ ( c o  I 9) = f f ( l -  fI3{s2 + 91 - 49, + 9-1 + 9-21 E -Qojgj 

where gj = g(cj) is a component of a 5-vector. The matrix elements for Rij with 
i = -1,-2 can be obtained by interchanging 1 c) -1 and 2 U -2. 

To evaluate the diffusion coefficient one has to calculate cW'c in (17), where 
R is defined in (21). We observe that R-'c is an odd function of c and hence a 
linear combination$ of c and c3, or equivalently R-'c = A$Jl + W 2  where +1 = 
c = (2 ,1 ,0 , -1 , -2 )  and $J2 = $(5c3- 17c) = (1 , -2 ,0 ,2 , -1 )  are orthogonal. After 

t The cwe of maximally random collision ru les  for this model is already covend by the second section. 
t A complete bwia for this 5-dimemional space is formed by the five 5-vectors {l,c, c*, PI c'}. 
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determining A and B in 
in (17) 

terms of Q(mn) = $,n$, we find for the 

- 1  20  D = 2 A - 1 =  
0 ( l l )  - 02(12)/0(22) 

diffusion coefficient 

For the non-se!f-dua! co!!Ision x!s ef (19) one obkins for the coefficients 

0(mn) = f f ( 1  - f)3A!$, . (23) 

They have the numerical values 

,.. 
(24) 11 - 40 A\') - A[') = -10 Ais) - 

22 - 80 - 
12 - 21 

and lead to the following values of the diffusion coefficient: 

32 
3 1 f ( l -  f ) 3  - ''  D =  (25) 

To calculate the VACF in (18) one needs to  determine the odd eigenfunctions of 0 
and corresponding eigenvalues = i(6 f &)f(l - f)3,  yielding a sum of t m  
exponentials 

(26) ,d+i - " I 1  - 1 i t  I hII - 1 i t  y,1, - Y,' ~ I I  11 7 "\' ~ " 2 1  

and the coefficients {a,b} can be easily calculated, if so desired. 
The collision rules in (19) can also be extended to self-dual rules (particlehole 

symmetry), by allowing a spectator particle. For this model one obtains in a similar 
fashion 

0(mn) = )f(l - f)3A2A + hfZ(l - f)'AzL 

-11 A < ?  = ~ --" 1 i n  10 @ = !2ni (28) 

(27) 

with A(') as in (24) and 

The resulting diffusion coefficient for the self-dual version of this model becomes then 

228 
f(1- f)*[279 + 270f - 25f2] - D =  

The method of this section for calculating the diffusion coefficient of a tagged particle 
can be applied to any athermal or thermal LGCA [15,16]. From the collision rules one 
constructs first the Lorentz-Boltzmann operator 0, as in (21) and subsequently R-'c. 
With minor modifications the method can be adapted to  thermal lattice gases [17], 
where energy is non-trivially conserved. 
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5. Conclusion 

The work of HCnon [l], and d'Humihes et a1 [2] on transport coeficients in LGCA 
has been extended to include tagged particle properties in all basic LGCA models 
considered in the literature. We have explicitly calculated the diffusion coefficient and 
the VACF in the mean-field or Boltzmann approximation, that takes only uncorrelated 
collisions into account. Our conclusions are given in a number of comments. 

(1) Tagged particle dynamics is specified for two extreme choices: the maximally 
random collision rules (MaxRCR) and minimally random collision rules (MinRCR). For 
the completely filled lattice (f = 1) the former case reduces to  a standard random 
walk on a regular lattice; the latter to ballistic motion. With MaxRCR at f = 1 the 
eigenvalue in (2) is X = 1, the diffusion coefficient D = ip(0) and the VACF p(t) = 0 
for t 2 1. With MinRCR, the eigenvalue X - 0, the mean free time between collisions 
io = -iin(i - Xjj-: diverges, and so does the diiiusion coefiicient, whereas the VACF 
p(t) 3 1 for f 2 1. 

( 2 )  In the mean-field approzimation with MaxRCR the diffusion coefficient and 
VACF are determined through (2) and (3), and are completely independent offhe in- 
feracfions offhe fluid particles. The results remain valid when all interacting collisions 
are replaced by non-interacting ones. This is caused by the combined effect of (i) mo- 
mentum conservation and (iij MaxRcii, which treats interacting and non-interacting 
collisions on equal footing. However, dependence on fluid collision rules does occur 
if either condition is not satisfied. For instance, the use of MaxRCR in the tagged 
particle correlation functions such as (u(O)u(t)) with U = U: - U: (here momentum 
conservation cannot be used to calculate the expected u(f)-value after one time step) 
leads to results depending on the detailed collision rules of the CA fluid, and so does 
wc usc. UL Iyunnbn 111 ULL. VAU. 

(3) In the context of long time tail studies in the FHP-I11 and FCHC models the 
mean-field results for the eigenvalue A,  diffusion coefficient and VACF in (2) have also 
been calculated using M a x ~ c ~ .  For the 7-bit FHP-I11 model the eigenvalue is found to 

M H Ernst and T Naifoh 

.L.. ..-- ̂C... -"n :.. *L. ... "- 

be PI 

Analysis shows that this formula is just a special case of (3) for b = 7. For the 24-bit 
FCHC model the result is given as [7] 

where the numerical values of the coefficients A, are tabulated. Analysis shows that 
these coefficients are in fact A, = ( 6  - I)-' (b;l) with b = 24. This result is in in 

A,, = &), which has no observable effect on the diffusion coefficient. 
(4) Consider a non-inferacting lalfice gas with a uniform position and velocity 

distribution, consistent with the symmetry of the underlying lattice. The system is 
contained in a box of size L, x L ,  x . . . x L ,  with periodic boundary conditions. A 
tag hops from particle to particle according to MsxRCR. Then, the VACF of the tag, 

With (3) apart frani tiwy iii [q jthe !i3ted vapde A,, = 0 sho.;!d be 
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rp(t) = rp(O)(l - A)' with X in (3) is exact for all t smaller than the minimum of 

(5) The VACF of a LGCA in the mean-field approximation is only a single ezponen- 
tial rp(t) = p(O)(l-A)' in cases where the expected velocity after one time step Z(1 I c) 
equals (1 - A)c with a A-value independent of the incoming velocity, i.e. where c is an 
eigenvector of the Lorentz-Boltzmann collision operator R for the tagged particle. In 
general the VACF is a sum of exponentials xi ai( 1 - Ai)' where Ai are eigenvalues of 
R (see equations (26) and (18)). 

(6) The first Enskog approzimation for the calculation of transport coefficients [18] 
assumes an approximate solution of the Boltsmann equation, OF(c)  = c,  (it is an 
integral equation in the case of continuous velocities) of the form of an approximate 
eigenfunction F ( c )  = Ac. This is equivalent to the ansatz ~ ( t )  = 40)[4l)/rp(O)]' = 
rp(O)[l - A]' for the VACF. The transport coefficient obtained in this manner (and 
denoted by [Dl0) is correct to within a few per cent for all intermolecular potentials. 
To see how this works out in lattice gases we consider the one-dimensional 5-bit LGCA 
of equations (19)-(25). Here the first Enskog approximation to D in (17) is obtained 
by setting R ( l 2 )  = 0 in (22), yielding 

I L , ,  L,, . . . !a. 

I t  equals D in (25) to within a few per cent. 
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